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Figure 1. ObjCtrl-2.5D enables versatile object motion control for image-to-video generation. It accepts 2D trajectories, 3D trajectories,
or camera poses as control guidance (all transformed to camera poses) and achieves precise motion control by utilizing an existing camera
motion control module without additional training. Unlike existing methods based on 2D trajectories, ObjCtrl-2.5D supports complex
motion control beyond planar movement, such as object rotation, as demonstrated in the last row. We strongly recommend viewing the
project page for dynamic results.

Abstract

This study aims to achieve more precise and versatile
object control in image-to-video (I2V) generation. Current
methods typically represent the spatial movement of target
objects with 2D trajectories, which often fail to capture user
intention and frequently produce unnatural results. To en-
hance control, we present ObjCtrl-2.5D, a training-free ob-
ject control approach that uses a 3D trajectory, extended
from a 2D trajectory with depth information, as a control
signal. By modeling object movement as camera move-
ment, ObjCtrl-2.5D represents the 3D trajectory as a se-
quence of camera poses, enabling object motion control
using an existing camera motion control I2V generation
model (CMC-I2V) without training. To adapt the CMC-I2V
model originally designed for global motion control to han-
dle local object motion, we introduce a module to isolate
the target object from the background, enabling indepen-
dent local control. In addition, we devise an effective way
to achieve more accurate object control by sharing low-
frequency warped latent within the object’s region across
frames. Extensive experiments demonstrate that ObjCtrl-

2.5D significantly improves object control accuracy com-
pared to training-free methods and offers more diverse con-
trol capabilities than training-based approaches using 2D
trajectories, enabling complex effects like object rotation.

1. Introduction

Video generation seeks to produce high-quality videos from
either a given text prompt (T2V generation) or a conditional
image (I2V generation) and recently, numerous effective
diffusion-based video generation models have emerged [1,
3, 5–7, 15–17, 24, 48, 61, 63, 65, 67]. The advancement of
these models has spurred interest in developing more con-
trollable generation, particularly for controlling the move-
ment of objects within the generated video.

Most existing methods control objects using two-
dimensional (2D) representations, such as bounding
boxes [19, 23, 32, 49, 62] and trajectories composed of
discrete points [22, 54, 58, 64]. These 2D guides specify
only the spatial position of the moving object, while real-
world objects move within a three-dimensional (3D) space.
The lack of 3D information often results in unnatural video
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outputs, as illustrated in Figure 2. The generated result in
the first row is produced by DragAnything [58], a training-
based object control method that relies on 2D trajectories as
input. While the car relatively accurately follows the pro-
vided 2D trajectory, its movement is almost entirely hori-
zontal toward the grass, which is unrealistic. In the refer-
ence video, the car moves not only toward the lower-left di-
rection but also approaches the camera, as indicated by the
decreasing depth along the 3D trajectory extracted from the
reference video. We believe this depth information helps
render the car to stay on the road instead of veering off into
the grass in this sample.

To this end, we propose ObjCtrl-2.5D1, a method that
significantly enhances the accuracy of object motion con-
trol in T2V generation by explicitly leveraging 3D trajecto-
ries derived from 2D trajectories and scene depth informa-
tion. Inspired by the effectiveness of camera motion con-
trol using camera poses in vision generation, such as Mo-
tionCtrl [54] and CameraCtrl [14], we propose to model
the object movement with camera poses, which allows us
to fully utilize the existing Camera Motion Control T2V
(CMC-T2V) model for object motion control without any
additional training.

Specifically, we first extend the 2D trajectory to 3D using
the depth information extracted from the conditional image,
and then project the 3D trajectory to camera poses via a tri-
angulation algorithm [38, 39]. Given camera poses, existing
CMC-T2V methods [14, 54] globally control camera mo-
tion in the generated videos, which conflicts with our need
for local object motion control. To achieve training-free
object motion control with the existing CMC-T2V mod-
els, we introduce a Layer Control Module (LCM) that iso-
lates the target object from the background. This ensures
that only the target object is influenced by the specified
camera poses, while the background retains natural mo-
tion behavior. Additionally, we propose a Shared Warp-
ing Latent (SWL) to further improve object control accu-
racy by sharing low-frequency warping latents within the
object’s area in each frame, establishing an initial object
movement that significantly influences the subsequent gen-
eration process. Leveraging the 3D information and a care-
fully designed object control model based on camera poses,
ObjCtrl-2.5D achieves a significant improvement in control
accuracy compared to previous training-free object control
methods [19, 23, 32]. Furthermore, as ObjCtrl-2.5D can ac-
cept custom camera pose sequences, it enables more com-
plex object motion control, such as object rotation, as illus-
trated in Figure 1.

In conclusion, this work makes the following main con-

1Our approach is termed 2.5D because, while combining a 2D trajec-
tory with depth information produces a 3D trajectory that enables more
realistic and controlled simulations of object movement in 3D space, it
does not capture all aspects of 3D geometry.
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Figure 2. Object control results using 2D and 3D trajectories.
On the right, the red line represents the 2D trajectory, the blue
line indicates the 3D trajectory extracted from real-world video in
DAVIS [31], and the green point marks the starting point of the
trajectory. The training-based method DragAnything [58], which
controls objects using a 2D trajectory, closely follows the specified
path; however, it results in the car appearing to move horizontally
toward the grass, which is atypical in real-world settings. By in-
corporating depth information from a 3D trajectory, our proposed
method generates videos that not only follow the spatial trajectory
but also achieve more realistic movement.

tributions: 1) ObjCtrl-2.5D extends 2D trajectories to 3D
using depth information and represents these 3D signals
with camera poses, achieving training-free object motion
control with higher accuracy. 2) ObjCtrl-2.5D introduces
a Layer Control Module and Shared Warping Latent, adapt-
ing the camera motion control module for effective object
motion control and significantly enhancing object control
performance. 3) ObjCtrl-2.5D achieves more complex and
diverse object control capabilities compared to previous 2D-
based methods.

2. Related Work

Video Generation. With the rising interest in content
generation, video generation has become a prominent re-
search area, producing a wealth of impactful work based
on generative adversarial networks (GAN) [11, 28, 36, 37,
45, 47, 53] and diffusion models (DM) [1, 3, 5–7, 15–
17, 24, 48, 61, 63, 65, 67]. Compared to GAN-based meth-
ods, diffusion models offer substantial advantages. To max-
imize the use of high-quality image datasets, most DM-
based video generation models are derived from robust
image-generation models, incorporating temporal modules
and fine-tuning on video datasets. Notable examples in-
clude VDM [16], which builds upon a pixel-space diffu-
sion model, and LVDM [15], which extends a latent dif-
fusion model. Numerous models follow a similar frame-
work, such as Align-Your-Latents [4], AnimateDiff [13],
the VideoCrafter series [6, 7, 61], and SVD [3], among oth-
ers. Furthermore, recent studies reveal that diffusion mod-
els based on transformers (DiT) [5, 17, 24, 63, 67] enhance
both generation quality and scalability in video generation
by replacing the conventional U-Net [35] backbone with
a transformer architecture. This study adopts the U-Net-
based diffusion model SVD [3], as it is relatively mature
in video generation and includes various extensions, such
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Figure 3. Framework of ObjCtrl-2.5D. ObjCtrl-2.5D first extends the provided 2D trajectory T2d to a 3D trajectory T3d using depth
information from the conditioning image. This 3D trajectory is then transformed into a camera pose Eo via Algrithm 1. To achieve object
motion control within a frozen camera motion control module, ObjCtrl-2.5D integrates a Layer Control Module (LCM) that separates the
object and background with distinct camera poses (Eo and Ebg). After extracting camera pose features via a Camera Encoder, LCM
spatially combines these features using a series of scale-wise masks. Additionally, ObjCtrl-2.5D introduces a Shared Warping Latent
(SWL) technique, which enhances control by sharing low-frequency initialized noise across frames within the warped areas of the object.

as control modules [14], which are valuable for exploring
object control in this work. Besides, as an image-to-video
generation model, SVD can tie the object and trajectories
easily by drawing trajectory on the given conditional image.
Object Motion Control in Diffusion Video Models. Ad-
vances in basic video generation have improved develop-
ments in video customization, including motion control
for both camera and object movement. Although pre-
vious works, such as Tune-A-Video [55], MotionDirec-
tor [66], LAMP [56], VideoComposer [52], and Control-
A-Video [9], enable motion learning from specific refer-
ence videos or guided motion generation through depth
maps, sketches, or motion vectors derived from reference
videos, these approaches often lack user-friendliness. Given
their flexibility and interactivity, trajectory [8, 12, 22, 25,
26, 42, 44, 54, 58, 64] and bounding box-based [19, 23,
32, 49, 62] methods have become popular in video mo-
tion control, generally classified as either training-based
or training-free approaches. Training-based methods, in-
cluding DragNUWA [64], DragAnything [58], and Image-
Conductor [22], utilize trajectories to control both camera
and object motion, while Boximator [49] achieves control
using bounding boxes. MotionCtrl [54], by contrast, in-
dependently manages camera and object movements with
separate camera and trajectory controls. Although effec-
tive, these methods demand significant computational re-
sources for data curation and model training. Alternatively,
training-free methods, SG-I2V [27] and [60] required per-
sample optimization, and Direct-A-Video [62], PEEKA-
BOO [19], TrailBlazer [23], and FreeTraj [32], enable ob-
ject motion control by adjusting attention weights and initial
noise according to specified trajectories and object bound-
ing boxes. Although efficient and less computationally de-
manding, these methods are limited to 2D spatial object

movements and can only coarsely constrain generated mod-
els within the given bounding boxes, which limits accuracy
and the ability to model diverse movements.

In contrast, ObjCtrl-2.5D presents a method for extend-
ing 2D trajectories into 3D, further modeling them through
camera movement using a relatively precise transformation
algorithm. By adapting a previous camera motion control
module with delicate designs, this approach enables more
accurate and versatile object motion control in image-to-
video (I2V) generation, without additional training.

3. Methodology
3.1. Preliminary
Stable Video Diffusion (SVD). We adopt SVD [3], a pub-
licly available and commonly used I2V diffusion model, as
the basic model for our generation. SVD takes a conditional
image Ic as input and generates a video with N frames
{F0,F1, . . . ,FN−1} using a conditional 3D U-Net [35] in-
tegrated with a latent denoising diffusion process [34].
CameraCtrl. Considering that object motion reflects the
changes in spatial location across frames, we adopt Cam-
eraCtrl [14], a model that spatially represents camera poses
using Plücker embeddings [43], as the basis for our object
motion control. Generally, camera poses include intrinsic
parameters, denoted K = [[fx, 0, cx], [0, fy, cy], [0, 0, 1]],
and extrinsic parameters E = [R|t], where R ∈ R3×3

represents camera rotation and t ∈ R3×1 represents trans-
lation. Plücker embeddings enhance this representation
by defining camera poses spatially as px,y = (o ×
dx,y,dx,y) ∈ R6, where (x, y) indicates a position in im-
age coordinates, o ∈ R3 is equal to t and represents the
camera center in world coordinates, and dx,y ∈ R3 is the
direction vector from the camera center to pixel (x, y) in
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world coordinates. Specifically,

dx,y = RK−1[x, y, 1]T + t. (1)

CameraCtrl extracts multi-scale camera motion information
from the Plücker embeddings P ∈ RN×6×H×W , where N ,
H , and W represent the length, height, and width of the
generated video, respectively, using a camera encoder. This
camera motion information is then integrated into SVD, en-
abling global camera motion control.

3.2. ObjCtrl-2.5D
ObjCtrl-2.5D is a training-free model for object motion
control, distinguishing itself from previous 2D-based ap-
proaches [19, 32, 58, 64] using 3D trajectories, which are
attained by extending 2D trajectories with depth informa-
tion. These 3D trajectories serve as control signals and are
expressed as camera poses, allowing ObjCtrl-2.5D to lever-
age existing camera motion control models like CameraC-
trl [14] for object motion control without additional train-
ing. Specifically, we first extend a 2D trajectory to 3D with
depth from a conditional image. Subsequently, the 3D tra-
jectory is modeled as a sequence of camera poses using
triangulation [38, 39]. To adapt global motion methods,
such as CameraCtrl, to local motion control, we introduce
a Layer Control Module (LCM) that isolates the target ob-
ject from the background, allowing for independent local
manipulation. Additionally, Shared Warped Latents (SWL)
is proposed to improve object control accuracy by sharing
low-frequency warped latent information across the object
area in each frame. Details of these components are pro-
vided in the following subsections.

3.2.1. 2D Trajectory to 3D to Camera Poses
2D Trajectory to 3D. The 2D trajectory is represented
as T2d = {(x0, y0), (x1, y1), . . . , (xN−1, yN−1)}, where
i ∈ [0, N − 1]. This trajectory is extended to 3D as T3d =
{p0, p1, . . . , pN−1}, with each point pi = (xi, yi, di) incor-
porating depth di, a value derived from the depth map Dc

of the conditional image Ic using ZoeDepth [2]. Specifi-
cally, di is the depth value of Dc at the coordinate (xi, yi).
To maintain smooth transitions, any abrupt depth changes
between neighboring trajectory points are normalized. Ad-
ditional details are provided in the supplementary materials.
3D Trajectory to Camera Poses. In this work, we trans-
form the 3D trajectory to camera poses with triangulation
algorithm [38, 39]. As illustrated in Figure 4, the ob-
ject’s movement from p0 to pi between frames F0 and
Fi is modeled as a corresponding camera movement from
C0 to Ci, with all trajectory points mapped to the same
point Pw = (xw, yw, zw) in world coordinates. Since user-
provided trajectories are often sparse, making it difficult to
fully recover both rotation R and translation t, we simplify
by modeling the 3D trajectory as camera translation only,
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Figure 4. 3D Trajectory to Camera Poses. We model the object
movement in a video, indicated by a 3D trajectory, as the camera’s
location translation in 3D space. Details refer to Sec. 3.2.1 and
Algorithm. 1.

omitting rotation. Thus, R is set as an identity matrix I for
all camera poses, enabling us to represent the 3D trajectory
with camera movement by solving for ti = [tix, t

i
y, t

i
z] using

triangulation [38, 39].
Specifically, we first calculate the camera coordinates

Ci = (xi
c, y

i
c, z

i
c) for each frame, using the 3D tra-

jectory points along with intrinsic parameters K =
[[fx, 0, cx], [0, fy, cy], [0, 0, 1]]:

xi
c = zic(x

i − cx)/fx; yic = zic(y
i − cy)/fy; zic = di.

(2)
Following previous works [50, 59], K can be roughly
estimated based on the spatial dimensions of the gen-
erated video or estimated with existing methods, such
as UniDepth [30]. Then, we compute Pw =
(xw, yw, zw) with world-to-camera transformation, i.e.,
Ci = [I|ti][xw, yw, zw, 1]

T , attained:

xw = xi
c − tix; yw = yic − tiy; zw = zic − tiz. (3)

Drawing inspiration from DUSt3R [51], we set the first
frame F0 as the canonical camera space, i.e., t0 = [0, 0, 0]
and the subsequent frames are expressed in the same coor-
dinate space as F0. Thus, Pw = (x0

c , y
0
c , z

0
c ) and:

tix = xi
c − x0

c ; tiy = yic − y0c ; tiz = zic − z0c . (4)

The pseudocode is given in Algorithm 1.
Note that while ObjCtrl-2.5D models the 3D trajectory

as camera poses without rotation, it can also accept user-
provided camera poses with rotation, thereby supporting
motion control beyond mere translational movement in 3D
space, such as object self-rotation (see last row in Figure 1)
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3.2.2. Layer Control Module
To adapt CameraCtrl [14], originally designed for global
motion control, to object-specific motion, we introduce
Layer Control Module (LCM). This module separates the
conditional image Ic into foreground and background lay-
ers using an object mask Mc generated via instance seg-
mentation, such as SAM [21, 33]. The foreground layer
is controlled by object-specific camera poses Eo, derived
from 3D trajectories outlined in Sec. 3.2.1, while the back-
ground layer is guided by background-specific poses Ebg.
These background poses can be customized, with options
like [I|0] allowing for a static background.

To extract camera features, Eo and Ebg are fed into the
Camera Encoder, yielding Fo = {f0

o , f
1
o , . . . , f

S−1
o } and

Fbg = {f0
bg, f

1
bg, . . . , f

S−1
bg }, where S is the number of

scales. These features are then fused with mask Mo, which
indicates the dominated area of Eo, while (1 − Mo) in-
dicates the dominated area of Ebg. To ensure Eo com-
prehensively covers the areas of the moving object across
all the frames, we first attain the frame-wise object area
Mw = {m0

w,m
1
w, . . . ,m

N−1
w } from Mc using a geometric

warping function warp(·) [10, 18, 29, 41], where:

mi
w = warp(M0;Dc,Eo

0,Eo
i,K), i ∈ [0, N − 1],

(5)
where Dc is the depth, Eo

i is the object’s camera pose for
frame i, and K represents the intrinsic parameters. The
union of these masks, Mu =

⋃N−1
i=0 mi

w, defines the com-
plete object area dominated by Eo.

To prevent Mu from losing effectiveness during smaller-
scale feature fusion, particularly for smaller target objects,
we progressively dilate Mu at each scale using kernel
K. This process generates a set of dilated masks Mo =
{m0

o,m
1
o, . . . ,m

S−1
o }, where

ms
o = ms−1

o ∗Ks−1, s ∈ [0, S−1], m−1
o = Mu. (6)

Then fused feature F = {f0, f1, . . . , fS−1} is:

fs = fs
o ⊙mo

s + fs
bg ⊙ (1−mo

s), s ∈ [0, S − 1], (7)

which is scale-wisely injected into SVD to control object
motion in the generated video.

3.2.3. Shared Warping Latent
As a training-free approach, ObjCtrl-2.5D with LCM
achieves good performance in object motion control com-
pared to related methods. To further enhance control accu-
racy on challenging cases, such as generating uncommon
object movements like a reversing boat (as shown in Fig-
ure 7), we introduce frame-wise shared low-frequency la-
tents [32], i.e., Shared Warping Latent (SWL). Unlike Free-
Traj [32], which simply copies object latents, bounding with
a box, from the first frame to all frames, we employ a ge-
ometric warping function warp(·) [10, 18, 29, 41] to warp

Algorithm 1 Pseudocode of 3D Trajectory to Camera Poses.

def Traj3D_to_CameraPoses(T3d, fx, fy, cx, cy):
’’’
Input:

T3d: numpy.array, [N, 3], [frame_id, (x, y, d)]
fx, fy, cx, cy: float, intrinsic paramters.

Output:
t: [tx, ty, tz]

’’’
zc = T3d[:, 2]
xc = (T3d[:, 0] - cx) * zc / fx
yc = (T3d[:, 1] - cy) * zc / fy

xw, yw, zw = xc[0], yc[0], zc[0]
tx, ty, tz = xc - xw, yc - yw, zc - zw

return [tx, ty, tz]

shared latent across frames, enabling a more precise object
moving control.

Similar to Eq. 5, given the initial noise z of all the
frame, we create a sequence of warped noise maps, zw =
{z0w, z1w, . . . , zN−1

w } from z0, the first noise map in z, as
follows:

ziw = warp(z0;Dc,Eo
0,Eo

i,K), i ∈ [0, N − 1]. (8)

To ensure that only latents within the object regions are
shared across frames while preserving randomness in the
background, we apply warping masks Mw to the warped
noise, blending them back into z to produce zL:

zL = Mw ⊙ zw + (1−Mw)⊙ z. (9)

To mitigate the quality decrease of the generated video, only
low-frequency information from zL is retained:

ẑ = FFT 3D(zL)⊙H+ FFT 3D(z)⊙ (1−H), (10)

where FFT 3D denotes the 3D Fast Fourier Transform [57],
H is a 3D low-pass filter, and ẑ serves as the noise at the Tth

step in SVD.

4. Experiments
Experimental Settings. ObjCtrl-2.5D employs CameraC-
trl [14], deployed on SVD [3], as the foundational image-to-
video generation model. It supports diverse object control
inputs, such as 2D trajectories, 3D trajectories, and camera
poses, and outputs videos with a resolution of 320 × 576
and a length of 14 frames.
Evaluation Datasets. (1) DAVIS: To evaluate the effec-
tiveness of ObjCtrl-2.5D on both 2D trajectories with depth
and 3D trajectories, we extend the DAVIS dataset [31] by
generating 3D trajectories using SpatialTracker [59]. The
DAVIS dataset comprises 90 real-world videos with corre-
sponding instance mask annotations. For each video, we
use the first frame as the conditional image input for image-
to-video (I2V) generation and randomly select one 3D tra-
jectory within the instance mask as the guidance for object
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ObjCtrl-2.5D FreeTraj* PEEKABOO* ObjCtrl-2.5D FreeTraj* PEEKABOO*

Figure 5. Qualitative Comparison with Training-free Methods. While PEEKABOO [19] and FreeTraj [32] can move the object coarsely
within the bounding boxes generated from the trajectory, they lack control precision. In contrast, ObjCtrl-2.5D achieves higher trajectory
alignment by extending the 2D trajectory to 3D and accurately transforming it into camera poses through a geometric projection algorithm
(triangulation [38, 39]).

Inputs ObjCtrl-2.5D DragAnything

ObjCtrl-2.5D DragAnything DragNUWAInputs

Figure 6. Qualitative Comparison with Training-based Methods. Due to their training strategy, DragAnything [58] tends to apply
global movement to objects (both potted plants shift downward, despite only the right plant being specified to move), and DragNUWA [64]
often moves only part of the target object. In contrast, our proposed ObjCtrl-2.5D achieves precise, targeted object control thanks to its
Layer Control Module. Additionally, ObjCtrl-2.5D is capable of performing more versatile object control when given a trajectory with a
fixed spatial position (the green point in the second sample), such as front-to-back-to-front movement, while DragAnything [58] generates
a relatively static video.

control. (2) ObjCtrl-Test: As object movement trajectories
extracted from real videos with existing trackers [20, 59] of-
ten reflect camera movement rather than precise object mo-
tion, we developed a new test set specifically for evaluating
object motion control in T2V generation, termed ObjCtrl-
Test. ObjCtrl-Test comprises 78 samples, each containing
a high-quality image, an object mask indicating the target
for movement, and a 2D trajectory. In contrast to DAVIS,
where movements are commonly observed in real-world
contexts, ObjCtrl-Test includes a variety of samples de-
signed to prompt unconventional or rare object movements.
Evaluation Metrics. Following previous works [54, 58],
we evaluate the generated video quality using the Fréchet
Inception Distance (FID) [40] and Fréchet Video Distance
(FVD) [46], taking the real videos in DAVIS [31] as refer-
ence. To assess object motion control precision, we use Ob-
jMC [54], which calculates the distance between target tra-
jectories and the trajectories of generated videos, estimated
using SpatialTracker [59]. Lower ObjMC scores indicate

better object control accuracy. For a more comprehensive
evaluation, we additionally conduct a user study.

4.1. Comparison with State-of-the-art Methods
To provide a thorough evaluation, we compare ObjCtrl-
2.5D with both training-free and training-based methods.
For training-free approaches, we use two recent methods:
PEEKABOO [19] and FreeTraj [32]. These methods, ini-
tially designed for I2V generation, incorporate adaptive at-
tention mechanisms for object motion control. In adapt-
ing them for I2V generation, we omit manipulations on
cross-attention since SVD [3] utilizes a single embedding
feature from the conditional image for cross-attention in-
put. We denote these adapted versions as PEEKABOO∗

and FreeTraj∗. For training-based methods, we use Drag-
NUWA [64] and DragAnything [58], both of which were
trained with 2D trajectories and perform well under such
conditions.

The quantitative results in Table 1 demonstrate that
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Table 1. Quantitative Comparisons on DAVIS [31] and
ObjCtrl-Test. ObjCtrl-2.5D, as a training-free approach, shows
promising improvement in object motion control compared to
prior training-free methods, PEEKABOO [19] and FreeTraj [32],
as indicated by ObjMC scores. Although there remains room for
improvement compared to training-based methods such as Drag-
NUWA [64] and DragAnything [58], ObjCtrl-2.5D offers more
versatile object control, as demonstrated in Figure 1 and Figure 6.

DAVIS ObjCtrl-Test
Methods FID ↓ FVD ↓ ObjMC ↓ FID ↓ FVD ↓ ObjMC ↓

DragNUWA [64] 62.36 11.68 37.57 235.94 27.45 58.80
DragAnything [58] 59.81 11.05 46.10 227.72 26.93 60.81

PEEKABOO∗ [19] 62.43 11.97 128.05 250.68 27.54 164.40
FreeTraj∗ [32] 69.72 12.62 125.30 244.88 26.74 158.39

ObjCtrl-2.5D 59.77 12.22 91.42 247.48 27.82 120.37

ObjCtrl-2.5D improves object motion control, as evidenced
by the substantial reduction in the ObjMC score compared
to other training-free methods. This improvement primar-
ily stems from the fundamental differences in model design
between ObjCtrl-2.5D and PEEKABOO∗ and FreeTraj∗.
Both PEEKABOO∗ and FreeTraj∗ rely on 2D trajectories
represented as a series of bounding boxes, as illustrated in
Figure 5. This approach enables coarse object movement
within the specified bounding boxes but lacks the precision
of exact trajectory alignment. In contrast, ObjCtrl-2.5D
achieves higher trajectory alignment by extending the 2D
trajectory to 3D and accurately transforming it into camera
poses through a geometric projection algorithm (triangula-
tion [38, 39]), yielding significantly better alignment with
the given trajectory than PEEKABOO∗ and FreeTraj∗.

On the other hand, Table 1 indicates that ObjCtrl-2.5D
remains room for improvement compared to training-based
methods like DragNUWA [64] and DragAnything [58].
These methods, trained on optical flow-based or tracker-
derived trajectories, are inherently skilled at closely fol-
lowing specified trajectories, leading to high ObjMC per-
formance. However, their design often results in moving
the entire scene rather than isolating the target object’s mo-
tion. This limitation is visible in DragAnything [58] in the
first row of Figure 6, where both potted plants shift down-
ward, despite only the right plant being specified to move.
Moreover, in this example, DragNUWA [64] fails to move
the entire right-side plant, likely due to a lack of seman-
tic awareness. In contrast, ObjCtrl-2.5D achieves targeted
object control advanced from the proposed Layer Control
Module, which restricts the camera poses derived from the
given trajectory to areas around the target object, minimally
affecting the background. As demonstrated in the second
row of Figure 6, when given a trajectory with a fixed spatial
position, ObjCtrl-2.5D can perform front-to-back-to-front
object movement by leveraging depth information (indicat-
ing an increase and subsequent decrease in depth). Mean-
while, DragAnything [58] tends to maintain object static in

(a) w/o LCM (b) w/o Scale-wise Mask (c) w/o SWL (d) ObjCtrl-2.5D

Figure 7. Qualitative Results of Ablation Studies on LCM,
Scale-wise Mask, and SWL. Without the Layer Control Module
(LCM), ObjCtrl-2.5D applies motion control to the entire scene (a)
rather than isolating the specific object (d). Removing the Shared
Warping Latent (SWL) reduces controllability (c), while omitting
the scale-wise mask may eliminate controllability (b).

Figure 8. User Study. The majority of participants preferred
the results obtained with ObjCtrl-2.5D over both training-free and
training-based methods, attributing this preference to its better tra-
jectory alignment and more natural motion generation.

the generated video under similar conditions.
To provide a comprehensive evaluation, we conducted a

user study using the ObjCtrl-Test dataset. Fifty individu-
als with experience in AIGC participated, voting on which
videos demonstrate better alignment of a specified object
to the given trajectory and contain more natural perfor-
mance. As shown in Figure 8, approximately 72.95% of
participants preferred ObjCtrl-2.5D over PEEKABOO [19]
and FreeTraj [32], while 63.68% favored ObjCtrl-2.5D over
DragNUWA [64] and DragAnything [58] for its more natu-
ral motion generation.

4.2. Ablation Study
The effectiveness of Depth from Ic. To evaluate the
effectiveness of extending a 2D trajectory to 3D using
depth information from the conditional image Ic, we com-
pare the results of ObjCtrl-2.5D’s conducted on 2D trajec-
tory with depth to results obtained using 3D trajectories
in DAVIS [31], where trajectories are extracted from real-
world videos. ObjCtrl-2.5D with 3D trajectories achieves
an ObjMC score of 92.08, closely matching the 91.42 score
obtained by combining a 2D trajectory with depth from
Ic. This result indicates that supplementing a 2D trajectory
with depth from Ic can effectively approximate a 3D trajec-
tory, making it valuable for aiding object motion control in
T2V generation.
The Effectiveness of Layer Control Module and Scale-
wise Masks. The LCM is designed to adapt the camera
motion control module for object motion control by separat-
ing the object from the background, enabling independent
motion control for each. Without LCM, the base model of
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Figure 9. Qualitative Results of Ablation Studies on SWL
and Copy-pasting Shared Latent. The Shared Warping La-
tent (SWL) in ObjCtrl-2.5D restricts the shared latent specifi-
cally within the object’s warping areas, effectively avoiding un-
intended effects on the background while controlling the target
object. In contrast, the copy-pasting mechanism used in Free-
Traj [32] coarsely applies the shared latent within bounding boxes,
resulting in pronounced artifacts in the generated video.

ObjCtrl-2.5D typically aligns the trajectory by shifting the
entire scene, as shown in Figure 7 (a). With LCM, how-
ever, the global motion can be segmented into two distinct
camera poses for the object and background. Yet, because
the features of these two camera poses are spatially merged
based on object size, there is a potential risk of losing con-
trol over the object’s motion. To address this, we introduce
scale-wise masks that progressively dilate the merging mask
as the feature scale is downsampled.

To assess the effectiveness of the scale-wise mask, we
remove the dilation operation and apply the same mask at
all scales. This results in an increase in ObjMC score on
ObjCtrl-Test from 120.37 to 124.37 (smaller score is bet-
ter). The failed object motion for the boat, as shown in
Figure 7 (b), highlights this limitation. In contrast, ObjCtrl-
2.5D with scale-wise masks successfully drives the target
object, as seen in (c) and (d), demonstrating the effective-
ness of both the LCM and scale-wise masking.
The effectiveness of Shared Warping Latent. As shown
in Figure 7 (c) and (d), ObjCtrl-2.5D aligns with the given
trajectories more accurately when using SWL compared
to settings without it. By sharing latent across frames
within the warping object areas, SWL provides strong mo-
tion guidance, enhancing trajectory accuracy. In compari-
son to FreeTraj’s copy-and-pasting mechanism [32], where
shared latent is bounded by a box that includes areas outside
the object, SWL achieves a better ObjMC score (120.37 vs.
138.22) and avoids visible artifacts, as illustrated in Fig-
ure 9. However, as with [32], we find that sharing latent
across frames can decrease generation quality and is sen-
sitive to sample variations. Given ObjCtrl-2.5D’s robust
object motion control with LCM, we recommend using SWL
as an enhancement for more challenging cases, ensuring
a balance between precise motion control and high-quality
video generation.

4.3. More Extensions
Control with Customized Camera Poses. ObjCtrl-2.5D
not only accepts 2D or 3D trajectories as object motion con-

Figure 10. Additional Results with User-Defined Camera
Poses. ObjCtrl-2.5D allows both the object and background to
be manipulated using user-defined camera poses, enabling effects
like zooming in, as shown in these examples. More results can be
found in the supplementary materials.

Inputs Generated Videos

Figure 11. Failure Cases. Due to the limitations of SVD [3]
in handling large motions, ObjCtrl-2.5D with high-speed camera
poses results in the object fading out of the scene, leaving only
the background. Interestingly, this outcome reveals potential for
image inpainting applications, as seen in the last frames of the
generated videos.

trol conditions, but also directly accepts customized camera
poses, enabling even more versatile object motion control.
As shown in Figure 1, given a sequence of anti-clockwise
or self-rotating camera poses, ObjCtrl-2.5D can generate
videos with spatial rotations (e.g., the snowboarder in the
second row) or 3D space rotations (e.g., the rose in the third
row). Additionally, more examples, such as zooming in on
the object or background, are provided in Figure 10. More
results can be found in the supplementary materials.
Flexible Background Movement. The LCM in ObjCtrl-
2.5D enables flexible control over background motion by
applying different camera poses to background areas. This
includes fixed camera poses ([I|0]) across all frames, poses
reversed relative to the object’s movement, or no camera
poses at all. Detailed visual results can be found in the sup-
plementary materials.

4.4. Limitation

As a training-free method, the quality and motion fidelity
of ObjCtrl-2.5D depends on the performance of the under-
lying video generation model. Since the SVD model strug-
gles with fast-moving objects, ObjCtrl-2.5D is less effec-
tive for long trajectories within 14 frames. This limitation
can lead to issues such as motion blur, misalignment, or
object elimination when handling rapid or complex object
movements. Figure 11 demonstrates how high-speed cam-
era poses can cause the object to fade out of the scene,
leaving only the background. Interestingly, this unintended
outcome reveals potential for image inpainting applications
(see the last frame).
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5. Conclusion
In this study, we introduce ObjCtrl-2.5D, a novel frame-
work designed to improve object motion control in
video generation by incorporating 3D trajectories derived
from 2D trajectories and scene depth information. By
representing object movement through camera poses,
ObjCtrl-2.5D effectively leverages existing Camera Motion
Control T2V (CMC-T2V) models to achieve accurate
object control without additional training. Our approach
includes the development of a Layer Control Module
(LCM) to isolate the target object from the background
and a Shared Warping Latent (SWL) to enhance control
precision by establishing consistent initial object move-
ment. Experimental results demonstrate that ObjCtrl-2.5D
largely surpasses existing training-free methods in control
accuracy, as validated by both objective and subjective
metrics. Additionally, ObjCtrl-2.5D supports complex
object movements, such as object rotation, further broad-
ening its application in video generation. This work
underscores the value of integrating depth information
for realistic video outputs and highlights the potential for
future advancements in controllable 3D video generation.
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ObjCtrl-2.5D: Training-free Object Control with Camera Poses

Project page: https://wzhouxiff.github.io/projects/ObjCtrl-2.5D/

Supplementary Material

The supplementary materials provide additional details and
results achieved with the proposed ObjCtrl-2.5D, accom-
panied by in-depth analyses. For a comprehensive un-
derstanding, we highly encourage readers to view the
project page showcasing dynamic results. The structure
of the supplementary materials is outlined as follows:

• Section A provides additional details on transforming 2D
trajectories into 3D using depth extracted from the condi-
tional image.

• Section B discusses extensions involving customized
camera poses and flexible background movements.

• Section C presents additional comparative results with
previous methods.

• Section D showcases more results generated using
ObjCtrl-2.5D.

A. More Details about 2D Trajectories to 3D

In this work, ObjCtrl-2.5D extends 2D trajectories to 3D
by utilizing depth information, Dc, extracted from the con-
ditional image Ic. The depth di of each trajectory point
(xi, yi) is determined by the corresponding depth value
Dc(x

i, yi). When the trajectory spans both the foreground
object and the background, significant depth variations may
occur between consecutive points, as shown in Figure 12
(a). This can result in abrupt changes in object move-
ment along the trajectory. To address this, we smooth the
3D trajectory by analyzing its gradient, defined as grad =
di−di−1, i ∈ [1, N−1], and computing the standard devia-
tion of the gradient, gradstd = std(grad). If gradstd > θ,
the depth di is reset to the initial depth d0. In this work, we
set θ = 0.2.

To prevent such issues, we recommend drawing the
trajectory directly on the depth image, as shown in Fig-
ure 12, which inherently provides smoother depth transi-
tions ((b) and (c)) and avoids the abrupt changes shown in
(a). Additionally, unlike previous methods such as Drag-
NUWA [64] and DragAnything [58], which require trajec-
tories to start specifically from the target object, ObjCtrl-
2.5D offers greater flexibility. Trajectories can be drawn
anywhere on the depth image, ensuring a suitable depth
value for each point. This flexibility is achieved because
the trajectory in ObjCtrl-2.5D serves only to indicate
object motion and is ultimately transformed into spa-
tially independent camera poses. Object-specific motion
is then implemented using the merged mask introduced by
the Layer Control Module in ObjCtrl-2.5D.

B. More Extensions
Object Control with Customized Camera Poses.
ObjCtrl-2.5D supports user-defined camera poses for
controlling the motion of objects or the background.
Beyond the ”Zoom In” camera poses presented in the main
manuscript, we showcase additional results using various
camera poses, including zoom out, pan left, and pan right,
as illustrated in Figure 13. The examples demonstrate that
ObjCtrl-2.5D can drive the same sample differently with
different camera poses, such as the leftward, rightward, and
forward movements of the cloud in the second example.

C. More Compared Results
We provide additional comparisons with previous meth-
ods. As shown in Figure 14, ObjCtrl-2.5D outperforms
the training-free methods, including PEEKABOO [19] and
FreeTraj [32], in trajectory alignment. While training-based
methods like DragNUWA [64] and DragAnything [58] also
achieve good trajectory alignment, they often rely on global
movement or parts of the object movement rather than tar-
geting the specific object. In contrast, ObjCtrl-2.5D incor-
porates a Layer Control Module, enabling relatively pre-
cise control over the specific object with minimal impact
on other areas of the scene, while maintaining natural video
generation. We strongly recommend viewing the project
page for dynamic results.

D. More Results of ObjCtrl-2.5D
In Figure 15, we present additional results highlighting
the versatility of ObjCtrl-2.5D in object motion control,
achieved through a wide range of trajectories and cam-
era poses. Notably, with the same rotating camera poses,
ObjCtrl-2.5D can produce either self-rotation of the object
(first column of Figure 15 (b)) or 3D spatial rotation (sec-
ond and third columns of Figure 15 (b)), depending on the
object’s spatial location within the input image. Addition-
ally, ObjCtrl-2.5D allows fine adjustments to object mo-
tion speed by altering camera movements. For instance, as
shown in the fourth and fifth columns of Figure 15 (b), the
car in the input image moves left at varying speeds based on
different Pan Left camera poses.
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Figure 12. Guidelines for Drawing Trajectories. Drawing 2D trajectories directly on the depth image is recommended, as it ensures
smoother depth transitions and avoids abrupt changes (refer to (a)) with the intrinsic depth information. Furthermore, trajectories can be
drawn anywhere on the depth image to achieve appropriate depth values without affecting the movement of the target object.
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Figure 13. Additional Results with User-Defined Camera Poses. ObjCtrl-2.5D can drive the same sample differently with different
camera poses. We strongly recommend viewing the project page for dynamic results.
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Inputs FreeTraj*PEEKABOO*ObjCtrl-2.5D DragAnythingDragNUWA

Figure 14. More Compared Results with Previous Methods. ObjCtrl-2.5D outperforms training-free methods (PEEKABOO [19] and
FreeTraj [32]) in trajectory alignment and achieves more precise target object movement compared to training-based methods (Drag-
NUWA [64] and DragAnything [58]), which often result in either global scene movement or partial object movement. We strongly
recommend viewing the project page for dynamic results.

14

https://wzhouxiff.github.io/projects/ObjCtrl-2.5D/


(a) Guided with Trajectory

Rotating Rotating Rotating Pan Left 1 Pan Left 2 Pan Right

(b) Guided with Camera Poses Directly

Figure 15. More Results of ObjCtrl-2.5D. ObjCtrl-2.5D supports a wide range of trajectories and camera poses, showcasing its versatility
in object motion control. We strongly recommend viewing the project page for dynamic results.
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